โตชิบาเร่งพัฒนาระบบกักเก็บพลังงานไฟฟ้า รองรับการผลิตพลังงานหมุนเวียน

พุธ ๒๕ กันยายน ๒๐๑๙ ๑๓:๔๕
ไม่ว่าจะเป็นภัยธรรมชาติหรือภาวะโลกร้อนอันเกิดจากพลังงานฟอสซิล มีเหตุผลสำคัญมากมายที่ควรให้เราเร่งเปลี่ยนไปใช้พลังงานหมุนเวียน แต่พลังงานที่ได้จากแสงอาทิตย์หรือแรงลม เป็นแหล่งพลังงานที่มีความผันผวนสูง เอาแน่เอานอนไม่ได้ และแปรเปลี่ยนไปตามกาลเวลา อย่างไรก็ตาม วิธีการหนึ่งที่เชื่อว่าจะสามารถจัดการกับอุปสรรคนี้ได้ ก็คือการพัฒนาศักยภาพของเทคโนโลยีกักเก็บพลังงาน ในบทความนี้ เราจะมาดูกันว่า เทคโนโลยีนี้จะสามารถผลักดันให้เกิดการใช้พลังงานหมุนเวียนเพิ่มขึ้นได้อย่างไร

ปัญหาของการกักเก็บพลังงาน คืออะไร?

โดยธรรมชาติแล้ว ไฟฟ้าเป็นสสารที่เคลื่อนที่รวดเร็วมาก จนสามารถเข้าถึงผู้บริโภคได้ในทันทีที่มันถูกผลิตขึ้น

กฎของแอมแปร์ ได้อธิบายถึงการเคลื่อนที่ของกระแสไฟฟ้า และความสัมพันธ์ระหว่างสนามแม่เหล็กกับกระแสไฟฟ้าที่ไหลผ่านตัวนำ ไว้ว่า กระแสไฟฟ้า หมายถึง การแผ่กระจายของคลื่นแม่เหล็กไฟฟ้าซึ่งประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็ก การเคลื่อนที่ของประจุไฟฟ้าทำให้เกิดสนามแม่เหล็ก*1 และมีการแผ่กระจายสลับกันจากการเปลี่ยนแปลงของกำลังหรือทิศทางของสนามไฟฟ้า สนามแม่เหล็กและสนามไฟฟ้าจึงถูกแผ่กระจายสลับกันเป็นคลื่นแม่เหล็กไฟฟ้า

*1สนามแม่เหล็ก หมายถึง บริเวณโดยรอบแม่เหล็กหรือสิ่งของที่มีคุณสมบัติใกล้เคียงกันที่แม่เหล็กมีอำนาจการดึงดูดไปถึง ส่วนสนามไฟฟ้า หมายถึง บริเวณโดยรอบประจุไฟฟ้า ซึ่งประจุไฟฟ้าสามารถส่งอำนาจไปถึง

แผนภาพแสดงการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้ามีอยู่หลายรูปแบบตามธรรมชาติ เช่น แสง รังสี X-ray และไฟฟ้า โดยในภาวะสุญญากาศ คลื่นแม่เหล็กไฟฟ้าสามารถแผ่กระจายด้วยความเร็วแสง หรือ 300,000 กิโลเมตรต่อวินาที

ในโรงไฟฟ้า โรเตอร์ แม่เหล็กไฟฟ้าจะถูกหมุนอยู่ในชุดขดลวดที่เรียกว่า สเตเตอร์ (Stator) ซึ่งการหมุนนั้นจะทำให้เกิดกระแสไฟฟ้า และจะถูกส่งต่อไปยังผู้บริโภคตามสายไฟในทันที

ขั้นตอนการผลิตไฟฟ้าในโรงไฟฟ้า

พลังงานไฟฟ้า สามารถกักเก็บได้ด้วยวิธีใดบ้าง?

ทุกวันนี้มีเทคโนโลยีสำหรับการกักเก็บพลังงานไฟฟ้ามากมายหลายรูปแบบที่กำลังได้รับการศึกษาและพัฒนาอย่างต่อเนื่อง โดยมีเป้าหมายหลักเพื่อป้องกันไม่ให้เกิดเหตุไฟฟ้าขัดข้องหรือไฟดับ รวมถึงช่วยผลักดันให้เกิดการใช้พลังงานหมุนเวียนเพิ่มมากขึ้น โดยในที่นี้เราจะกล่าวถึงเพียงสองวิธี คือ โรงไฟฟ้าพลังน้ำแบบสูบกลับ และแบตเตอรี่สำรอง

ปัจจุบันมีการพัฒนาระบบการกักเก็บพลังงานไฟฟ้าหลากหลายวิธี

การกักเก็บพลังงานไฟฟ้าสามารถทำได้หลายวิธี หนึ่งในนั้นคือ การผลิตไฟฟ้าด้วยโรงไฟฟ้าพลังน้ำแบบสูบกลับ (Pumped Hydroelectric Energy Storage: PHES) โดยเมื่อมีการผลิตกระแสไฟ โรงไฟฟ้า PHES จะทำหน้าที่ในสถานะแบตเตอรี่พลังน้ำไปด้วย ขั้นตอนการทำงานจะเริ่มจากการเก็บน้ำไว้ที่อ่างเก็บน้ำด้านบน ซึ่งจะกลายเป็นพลังงานศักย์เชิงกลที่สามารถนำมาใช้งานได้เมื่อมีความต้องการใช้ไฟฟ้าสูง เมื่อปล่อยน้ำให้ไหลลงมาตามท่อลงสู่อ่างเก็บน้ำด้านล่าง แรงที่เกิดขึ้นจะทำให้กังหันน้ำหมุนและไปขับเคลื่อนเครื่องกำเนิดไฟฟ้า ส่วนในช่วงที่มีความต้องการใช้ไฟฟ้าต่ำ พลังงานส่วนเกินที่ผลิตได้ก็จะถูกใช้เพื่อสูบน้ำจากอ่างเก็บน้ำด้านล่างขึ้นไปสู่ด้านบนอีกครั้ง

หากโรงไฟฟ้าพลังน้ำแบบสูบกลับ หรือโรงไฟฟ้า PHES แห่งหนึ่ง มีกังหันขนาด 400 เมกะวัตต์ 4ตัว ทำงานต่อเนื่องเป็นเวลา 8 ชั่วโมง โรงไฟฟ้าแห่งนั้นก็จะสามารถผลิตไฟฟ้าได้เพียงพอสำหรับปริมาณการใช้ไฟฟ้าของ 1.6 ล้านครัวเรือนในแต่ละวัน*2

*2 ที่มา: สหพันธ์บริษัทพลังงานไฟฟ้าแห่งประเทศญี่ปุ่น ปี 2558

กลไกการทำงานของโรงไฟฟ้าพลังน้ำแบบสูบกลับ

โตชิบาเป็นผู้นำด้านเทคโนโลยีโรงไฟฟ้า PHES มาอย่างยาวนาน และยังเป็นผู้สร้างความก้าวหน้าให้กับภาคการผลิตไฟฟ้าด้วยการคิดค้นระบบ PHES ที่สามารถปรับความเร็วได้เป็นแห่งแรกของโลก ความสามารถในการปรับความเร็วได้นั้น หมายความว่า ในระหว่างการผลิตไฟฟ้าและการสูบน้ำ พลังงานไฟฟ้าที่ส่งเข้าและออกจากระบบ PHES สามารถควบคุมได้ตามการเปลี่ยนแปลงความถี่ของกริด (Grid) โดยการปรับความเร็วในการหมุนของมอเตอร์เครื่องกำเนิดไฟฟ้าในระบบ PHES ซึ่งเทคโนโลยีโรงไฟฟ้า PHES ที่ปรับความเร็วได้นี้ ส่งผลให้การดำเนินงานมีประสิทธิภาพมากขึ้นและระบบโครงข่ายไฟฟ้า หรือ Power Grid มีเสถียรภาพมากขึ้น

มอเตอร์เครื่องกำเนิดไฟฟ้าปรับความเร็วได้ หมายเลข 4 ณ สถานีพลังงานคาซึโนะกาวะ ประเทศญี่ปุ่น

อีกหนึ่งเทคโนโลยีคือ แบตเตอรี่แบบประจุใหม่ได้ หรือ แบตเตอรี่ชาร์จซ้ำได้ (Rechargeable Batteries) ซึ่งเรามักจะคุ้นเคยกันในรูปแบบของแบตเตอรี่โทรศัพท์มือถือแบตเตอรี่แบบชาร์จซ้ำได้ จะไม่ได้กักเก็บพลังงานไฟฟ้าโดยตรง แต่เป็นการกักเก็บเซลล์ไฟฟ้าเคมี โดยเมื่อแอโนดภายในประจุไฟฟ้าขั้วบวกและแคโทดภายในประจุไฟฟ้าขั้วลบถูกแช่อยู่ในอิเล็กโทรไลต์ จะทำให้เกิดปฏิกิริยาทางเคมีและปล่อยกระแสไฟฟ้าออกจากแบตเตอรี่เพื่อปฏิบัติงาน ในทางกลับกัน การชาร์จแบตเตอรี่จะทำได้โดยกระแสย้อนกลับ เมื่อมีกระแสไฟฟ้าจากภายนอกมาทำให้องค์ประกอบเดิมของแอโนดและแคโทดคืนสู่สภาพเดิมก่อนเกิดการใช้งาน จึงสามารถนำแบตเตอรี่กลับมาใช้ซ้ำได้อีก

แบตเตอรี่แบบชาร์จซ้ำ SCiB(TM) จากโตชิบา

นอกเหนือจากสองเทคโนโลยีข้างต้นแล้ว ยังมีเทคโนโลยีกักเก็บพลังงานอีกหลายรูปแบบที่กำลังอยู่ในขั้นตอนของการวิจัยและพัฒนา รวมถึงระบบกักเก็บพลังงานไฮโดรเจน โดยการใช้เซลล์เชื้อเพลิงเปลี่ยนพลังงานไฮโดรเจนและออกซิเจนเป็นพลังงานไฟฟ้า

นวัตกรรมเหล่านี้ ทำให้เกิดระบบกักเก็บพลังงานที่มีความหลากหลาย และสร้างโซลูชันในการรองรับวิถีชีวิตของมนุษย์เราในปัจจุบันที่ต้องพึ่งพิงพลังงานไฟฟ้าเป็นอย่างมาก โดยเฉพาะการรักษาสมดุลระหว่างอุปสงค์และอุปทานการใช้ไฟฟ้า และป้องกันไม่ให้เกิดไฟฟ้าดับหรือขัดข้อง นอกจากนี้ เทคโนโลยีกักเก็บพลังงานยังช่วยให้ผู้ประกอบการสามารถควบคุมแหล่งพลังงานที่มีความผันแปรสูง อย่างพลังงานลม และพลังงานแสงอาทิตย์ ได้อย่างมีประสิทธิภาพมากขึ้นอีกด้วย

ข่าวประชาสัมพันธ์ล่าสุด

๒๐ ธ.ค. ASMT ผนึก TFT ร่วมลงนามด้านวิชาการด้านอุตสาหกรรมการบิน
๒๐ ธ.ค. กรมวิชาการเกษตร เดินหน้า ถ่ายทอดองค์ความรู้การผลิตอะโวคาโดคุณภาพ สร้างรายได้เพิ่มให้เกษตรกรกว่า 2 แสนบาท/ไร่
๒๐ ธ.ค. Dow มุ่งพัฒนาประสิทธิภาพผลิตภัณฑ์ Personal Care ควบคู่ความยั่งยืน ตอบโจทย์ผู้บริโภคตลาดเครื่องสำอางในภูมิภาคเอเชีย
๒๐ ธ.ค. โอซีซี มอบความรู้ พัฒนาอาชีพให้ผู้ต้องขังหญิง
๒๐ ธ.ค. ดร.นุชนารถ ชลคงคา นำทีมสถาบัน ESTC จัดอบรมให้ Karmakamet
๒๐ ธ.ค. กนภ. เห็นชอบร่าง พรบ. การเปลี่ยนแปลงสภาพภูมิอากาศ กลไกสำคัญสู่เส้นทางเศรษกิจคาร์บอนต่ำ และมีภูมิคุ้มกันฯ
๒๐ ธ.ค. WePlay x คอลแลบตัวละครสุดปัง! พบกับมินิเกมใหม่ และการ์ตูนสุดน่ารักที่คุณจะต้องหลงรัก
๒๐ ธ.ค. เดลต้า ประเทศไทย และ WEnergy Global ร่วมลงนามบันทึกข้อตกลงเพื่อขับเคลื่อนอนาคตพลังงานสีเขียว
๒๐ ธ.ค. ความภาคภูมิใจของ ไลอ้อน กับ 3 รางวัลแห่งเกียรติยศ เผยผลงานโดดเด่นกับหลายรางวัลที่ได้รับในปี 2567
๒๐ ธ.ค. NOBLE คว้าเรทติ้งสูงสุด ระดับ AAA SET ESG Ratings ประจำปี 2567 ยกระดับองค์กรสู่ความยั่งยืนภายในแนวคิด Live Different ตามกรอบ