การนำ ChatGPT มาใช้อย่างรวดเร็วได้ยกระดับผลกระทบเชิงลบด้านสิ่งแวดล้อมในหลายมิติ จากที่ Generative AI เป็นเทคโนโลยีใหม่ที่กำลังได้รับความนิยม ได้กลายเป็นความกังวลขององค์กรทันที เมื่อยูสเคสที่เหมือนจะดูดีและถูกขับเคลื่อนโดยเทคโนโลยีเกิดใหม่นี้กลับสร้างผลเสียมากกว่าผลดีในแง่ของการปล่อยก๊าซเรือนกระจก (GHG) และปริมาณการใช้ไฟฟ้าและน้ำ
อย่างไรก็ตามหากใช้อย่างถูกวิธีและอยู่ภายใต้การควบคุมดูแลของมนุษย์ Generative AI ยังสามารถเร่งให้เกิดความยั่งยืนเชิงบวกพร้อมสร้างผลลัพธ์ทางการเงินได้ โดยเทคโนโลยีนี้อาจช่วยให้บริษัทลดความเสี่ยงด้านความยั่งยืน ปรับต้นทุนให้เหมาะสม และขับเคลื่อนการเติบโตได้
เพื่อสร้างสมดุลระหว่างอันตรายและประโยชน์ของเทคโนโลยีนี้ องค์กรจำเป็นต้องดำเนินการ 2 ประการ ประการแรก คือ สร้างการรับรู้และลดการปล่อยพลังงานของ Generative AI เพื่อให้มันเป็นมิตรต่อสิ่งแวดล้อมมากขึ้น จากนั้นระบุ ประเมินและจัดลำดับความสำคัญยูสเคสที่เกี่ยวกับความยั่งยืนด้านสิ่งแวดล้อม
ตระหนักถึงปัญหาด้านการบริโภคพลังงานของ Generative AI
Generative AI นั้นพึ่งพาโมเดลภาษาขนาดใหญ่ที่ได้รับการเทรนจากข้อมูลมหาศาล ซึ่งต้องระบายความร้อนด้วยน้ำหล่อเย็นและใช้พลังงานไฟฟ้า หรืออาจใช้พลังงานทั้งสองจำนวนมหาศาล แม้ในระยะยาวการปล่อยก๊าซเรือนกระจกที่เกี่ยวข้องกับไฟฟ้าจะลดลงเมื่อมีการใช้แหล่งพลังงานหมุนเวียนมากขึ้น ซึ่งโมเดล Generative AI ที่ทรงพลังยิ่งขึ้นจะต้องการความสามารถในการประมวลผลมากขึ้นตามไปด้วย
ปัญหาเทคโนโลยีที่เกี่ยวข้องกับพลังงานไฟฟ้าและน้ำนั้นมีมากกว่าของ Generative AI การ์ทเนอร์คาดการณ์ว่า ภายในปี 2568 ผู้บริหาร 75% จะเผชิญกับข้อจำกัดของเทคโนโลยีที่เกี่ยวข้องกับพลังงานไฟฟ้า เนื่องจากความต้องการเทคโนโลยีและการแข่งขันกันทางด้านสังคมจะทวีความดุเดือดมากขึ้น ดังนั้นผู้บริหาร CIO จึงไม่ต้องการที่จะติดอยู่ในศึกการแย่งชิงทรัพยากรที่มีจำกัดกับชุมชนท้องถิ่น
มุ่งมั่นลดการปล่อยพลังงาน Generative AI
Generative AI จะต้องมีประสิทธิภาพการทำงานเทียบเท่ากับสมองมนุษย์ เพื่อให้เป็นมิตรกับสิ่งแวดล้อมมากขึ้น สาเหตุหนึ่งที่ทำให้สมองประหยัดพลังงานมากก็คือ สมองสามารถจัดระเบียบความรู้ในโครงสร้างเครือข่ายได้ โดยแนวทางที่ใกล้เคียงที่สุดคือ Composite AI คือการรวมโมเดล AI หลายแบบเข้าด้วยกันเพื่อให้ได้ประสิทธิภาพและความแม่นยำที่ดีขึ้น ซึ่งใช้โครงสร้างเครือข่ายและเทคนิคคล้ายกันเพื่อเสริมกำลังมหาศาลด้วยวิธีการเรียนรู้เชิงลึกในปัจจุบัน
Generative AI ยังบริโภคพลังงานไฟฟ้าและน้ำเป็นหลัก ดังนั้นการหยุดเทรน AI ในทันทีหรือการเก็บข้อมูลการเทรนโมเดล การนำโมเดลที่ได้รับการเทรนแล้วกลับมาใช้ใหม่ และการใช้ฮาร์ดแวร์และอุปกรณ์เครือข่ายที่ประหยัดพลังงานมากขึ้น จะสามารถสร้างสมดุลแนวทางปริมาณงานในดาต้าเซ็นเตอร์แบบ "ตามสถานการณ์และความเป็นจริง - Follow The Sun" ซึ่งดีกว่าสำหรับการผลิตพลังงานสะอาด กับการใช้แนวทาง "แยกเดินออกมา Unfollow The Sun" สำหรับประสิทธิภาพการใช้น้ำที่ดีกว่า
อีกวิธีหนึ่งในการทำให้ Generative AI มีความเป็นมิตรต่อสิ่งแวดล้อมมากขึ้น คือการใช้งานในสถานที่ที่ใช่ ในเวลาที่เหมาะสม โดยความเข้มข้นของคาร์บอนจากแหล่งพลังงานในท้องถิ่นจะแตกต่างกันไปตามปัจจัยหลายประการ แนวปฏิบัติที่ดีที่สุดคือการใช้การจัดตารางเวลางานที่คำนึงถึงพลังงาน ควบคู่ไปกับบริการการติดตามและการคาดการณ์คาร์บอนเพื่อลดการปล่อยก๊าซที่เกี่ยวข้อง
พร้อมตั้งเป้าซื้อแหล่งพลังงานสะอาดใหม่ตามที่วางแผนไว้สำหรับนำมาใช้ The Greenhouse Gas Protocol ที่กำลังกำหนดให้บริษัทต่าง ๆ จัดทำการวิเคราะห์พลังงานสะอาดอย่างละเอียดเพิ่มเติมตามแหล่งสถานที่ ช่วงเวลาของวัน หรือทั้งสองอย่าง
ระบุยูสเคสความยั่งยืนด้านสิ่งแวดล้อมที่มีศักยภาพ
มี 3 กรอบการดำเนินงานกว้าง ๆ ที่ยูสเคส Generative AI สามารถเร่งความยั่งยืนด้านสิ่งแวดล้อม ได้แก่ การลดความเสี่ยง การเพิ่มประสิทธิภาพต้นทุน และใช้ขับเคลื่อนการเติบโต
การปฏิบัติตามกฎระเบียบเป็นวิธีการนึงที่ Generative AI สามารถช่วยองค์กรลดความเสี่ยงด้านสิ่งแวดล้อมโดยการระบุและตีความตัวบทกฎหมาย มาตรฐาน คำสั่ง และข้อกำหนดการรายงานความยั่งยืน รวมถึงการอัปเดตอยู่ตลอดเวลา ที่สามารถพัฒนาแผนปฏิบัติการเพื่อให้บรรลุตามข้อกำหนดและเป็นเครื่องมือฝึกอบรมเพื่อให้ความรู้แก่พนักงานด้านกฎระเบียบเฉพาะ
จากมุมมองของการเพิ่มประสิทธิภาพต้นทุน Generative AI สามารถช่วยสนับสนุนการตัดสินใจได้ สามารถวิเคราะห์ข้อมูลความยั่งยืนภายใน และระบุรูปแบบ แนวโน้ม พื้นที่การปรับปรุง ความเป็นไปได้ ความเสี่ยง และเกณฑ์มาตรฐาน โดยสามารถให้ข้อมูลเชิงลึกว่าการตัดสินใจขององค์กรจะส่งผลต่อความยั่งยืนอย่างไร และคาดการณ์ประสิทธิภาพในอนาคตที่อาจเกิดขึ้น องค์กรสามารถวางแผนและเลือกแนวทางที่เหมาะสมที่สุดเพื่อบรรลุเป้าหมายการลดการปล่อยก๊าซเรือนกระจก
Generative AI ยังสามารถใช้ขับเคลื่อนการเติบโตที่ยั่งยืนโดยนำมาใช้เพื่อค้นหาแหล่งทรัพยากรและวัสดุทางเลือก สามารถให้คำแนะนำสิ่งทดแทนปัจจัยการผลิตแบบเดิมไปสู่ความยั่งยืน เช่น ข้อมูลเชิงลึกเกี่ยวกับนวัตกรรมทางเทคโนโลยีอย่างวัสดุนาโน และข้อมูลเกี่ยวกับความพร้อม ประสิทธิภาพ และผลกระทบต่อสิ่งแวดล้อม
เมื่อพิจารณายูสเคส Generative AI เพื่อเป้าหมายความยั่งยืน การประเมินผลกระทบเชิงบวกและเชิงลบเป็นสิ่งสำคัญ ผู้บริหารต้องเข้าใจมูลค่าธุรกิจเชิงบวกทั้งในแง่ของผลประโยชน์ทางการเงินและความยั่งยืน ตลอดจนความเป็นไปได้ และผลกระทบเชิงลบต่อสิ่งแวดล้อมด้วยการวัดจากการปล่อยก๊าซเรือนกระจก การใช้พลังงานไฟฟ้าและน้ำ
จากนั้นจัดลำดับความสำคัญการลงทุนเป็น 3 ระดับ ได้แก่ 1.ลงทุนทันที 2.ลงทุนเพื่อลดความเสี่ยงและลดการใช้พลังงานเป็นสำคัญ หรือ 3.ไม่ลงทุนเลย ด้วยวิธีการนี้ คุณจะใช้ Generative AI เร่งผลลัพธ์ด้านความยั่งยืนเชิงบวกขององค์กร โดยใช้ประโยชน์จากเคสการใช้งานที่สร้างมูลค่ามากกว่าทำลายเพียงอย่างเดียว
ที่มา: พีซี แอนด์ แอสโซซิเอทส์ คอนซัลติ้ง